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+e paper discusses different approaches to building a medical decision support system based on big data. +e authors sought to
abstain from any data reduction and apply universal teaching and big data processing methods independent of disease clas-
sification standards. +e paper assesses and compares the accuracy of recommendations among three options: case-based
reasoning, simple single-layer neural network, and probabilistic neural network. Further, the paper substantiates the assumption
regarding the most efficient approach to solving the specified problem.

1. Introduction

Providing support to medical decision-making is one of the
most urgent issues in healthcare automation. It has been
repeatedly noted in different articles, reports, and forum
discussions [1] both in Russia and abroad that MIS in-
troduction requires a considerable extra effort from
users—doctors in the first place—to enter primary data into
the system. Naturally, doctors expect practical intelligent
outcomes from big clinical data accumulated by modern
MISs. Handler et al. [2] present the operating paradigm of
5th generationMISs, referred to as “MIS asMentor.”Malykh
et al. [3] adds one more qualitative characteristic to the
above paradigm—“MIS as automated mentor.” “It is ad-
visable to abandon the practice of active user dialogs typical
of expert systems, involving requests for data that the system
considers missing from the user, and substitute the dialog
with an automated nonintrusive algorithm that draws its
own logical conclusions and generates recommendations in
a completely automated manner based on available data,
without involving the user in the process. +e user may
either accept or ignore the system’s prompts and recom-
mendations; however, they will not provoke rejection in
users if delivered automatically without requiring a dialog
with the system.” To provide a brief qualitative description of

this increasing subjectivity of MISs, we have proposed a new
term “active MIS” that emphasizes a certain degree of in-
dependence from users or subjectivity of the cyber system.
Kohane [4] presents the most “balanced” definition of
personalized medicine, “personalized medicine is the
practice of clinical decision-making such that the decisions
made maximize the outcomes that the patient most cares
about and minimize those that the patient fears the most, on
the basis of as much knowledge about the individual’s state
as is available.” +is perception of personal medicine is
focused on clinical decision-making and once again exhibits
the urgency and importance of scientific research in the area.
+erefore, building an automated active mentor-type system
that provides recommendations regarding treatment and
diagnostic activities to the doctor is an urgent practical task.

Butko and Olshansky [5] and Kotov [6] provide a retro-
spective overview of approaches to building medical decision
support systems. +e applied approaches were restricted in
many respects by the abilities of computers at that time. Ac-
cordingly, there was no such problem as processing bigmedical
data. Technologies have evolved to the point when big medical
data (both on individuals and the population in general)
collection and accumulation is finally feasible. At the same
time, big data processing and intelligent system learning
methods were evolving as well. Along with “deep learning,” the
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term “deep patient” [7] was coined,meaning the opportunity to
extract increasingly more complete, deep, and valuable in-
formation about patients from big clinical data using deep
learning methods.

Malykh et al. [8] mention the possibility of creating
national-scale clinical data banks. Herrett et al. [9] provide
an example of a database (DB) containing anonymous
medical records on primary healthcare services provided.
+is DB was created by a joint effort of 674 general prac-
titioners and covers over 11.3mn patients in Great Britain.

Decision-making in hospitals has evolved from being
opinion-based to being based on sound scientific evidence.
+is decision-making is recognized as evidence-based
practice. Perpetual publication of new evidence combined
with the demands of everyday practice makes it difficult for
health professionals to keep up to date [10].

A large number of publications are devoted to medical
decision support systems (DSSs), including publications in
specialized scientific journals (Artificial Intelligence in
Medicine, BMC Medical Informatics and Decision Making,
International Journal of Medical Informatics, Medical De-
cision Making, etc.). +e work does not aim to give an
overview of different approaches to making of decision
support systems, referring readers to the original reviews
[11–13]. We can give a few definitions for decision support
system from Wikipedia: “Clinical Decision Support systems
link health observations with health knowledge to influence
health choices by clinicians for improved health care” and
“active knowledge systems, which use two or more items of
patient data to generate case-specific advice.” No one doubts
the feasibility of such systems and that they have a positive
impact on professional practice, patient outcomes, length of
hospital stay, and hospital costs. +e main problem is to find
effective approaches to building such systems.

A number of contemporary approaches to medical decision
support system development are listed by Malykh et al. [14].

+e first one of these approaches involves provision of
relevant data sources to doctors, helping them make decisions
independently. +e system does not recommend any final
solutions—instead, it suggests data sources to study and find
answers to current questions (Evidence-Based Clinical De-
cision Support at the Point of Care | UpToDate URL: http://
www.uptodate.com/home).

+e second approach is to use clinical pathways. Clinical
pathways represent prescriptive models of the standard
healthcare procedures that need to be undertaken for
a specific patient population. Instances of the clinical
pathways (also known as cases) describe the actual
diagnostic-therapeutic cycle of an individual patient [15].
But even in the case of the use of clinical pathways, the
process of clinical decision-making has high complexity.
While the medical knowledge used in the decision process
comes partially from published research contributions and
widespread medical guidelines (with various kinds of evi-
dence levels), it is generally accepted that the decision
process is profoundly influenced by the expertise and ex-
periences of the involved medical experts [15].

+e third approach involves development of a large
number of individual narrow-focused decision support

systems. +is approach helps achieve top quality when
solving isolated problems [6, 12]; however, it is almost
impossible to apply it to big clinical data.

+e fourth approach that claims to have a global scope of
application is focused on building a cognitive system capable
of self-learning and knowledge digestion directly from
nonformalized text sources (IBM Watson http://www.ibm.
com/smarterplanet/us/en/ibmwatson/).

None of the reviewed approaches is immaculate. All of
them require efforts of experts and regular updates of
knowledge bases. Moreover, each of the approaches is in fact
tailored to specific purposes.

+e latest Russian-language review [12] noted that
clinical decision support systems have not become wide-
spread in Russia. +is is due to the complexity of the de-
velopment of such systems, the specific character of the
systems already developed, and the need to involve high-
class experts in the development.

In this paper, we will review general approaches to
decision support system development based on nonreduced
big clinical data. +e main expectations related to applica-
tion of general approaches ensue from the case-based nature
of decision-making in healthcare, and the assumption that
big clinical data already contain enough knowledge for ef-
ficient decision-making.

+ere are two other factors that draw attention to sys-
tems based on machine learning or precedent approach.

First of them is that there are trends in the development
of our civilization which include an explosive development
of information technologies (among them M2M, Big Data,
and IoT), their strong need for formalized knowledge, and
practical absence of qualified experts who could formalize
that knowledge. +e chief editor of the Rational Enterprise
Management (REM) magazine (Russia) holds regular dis-
cussions on a wide range of problems including the above-
mentioned ones. Results of the discussions are published in
the REM editor’s column. +e guests of a recent discussion
[16] included Igor Rudym (Intel), Dmitriy Tameev (PTC),
Alexander Belotserkovskiy (Microsoft), Igor Girkin (Cisco),
and Igor Kulinitchev (IBM). All the participants agreed that,
nowadays, the key challenge of IT development is not as-
sociated with hardware or software, but it needs break-
through approaches to data analysis.

As for the second factor, it is obvious that, nowadays,
there are no qualified experts in the field of knowledge even
in key branches. +e actual situation is even more critical as
the experts who are able to solve at least a part of these
problems are not able to cope with ever increasing in-
formation flow. From this point of view, precedent-based
DSSs practically need no experts. Experts may be needed for
enhancing or optimizing existing medical data bases and
knowledge bases [14].

2. Model and Methods

We regard the diagnostic and treatment process (DTP) as
a discrete controlled process with a memory. +e model was
first introduced by Malykh et al. [17, 18] written in Russian.
In English, the model is described byMalykh et al. [8, 19]. To
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ensure further understanding of the essence of the problem,
let us provide an extract from the source.

Modern medical information systems store electronic
medical records and contain descriptions of millions of
various clinical cases. +e degree of formalization of clinical
data stored in MISs varies. MISs model the diagnostic and
treatment process as a sequence of controlling events
reflecting diagnostic and treatment activities, and a sequence
of monitoring events describing the condition of the patient.
Controlling events are well formalized; medical organiza-
tions keep statistical and business records of such events,
plan them, and allocate required resources. Medical data
related to monitoring of patients’ condition are less for-
malized and may be partly available in the form of plain text
medical documents.

Previous studies provide evidence that is possible to
model the DTP using controlled stochastic Markov processes
[18]. +e model is based on the assumption that the DTP is
a discrete controlled process. +e model introduces the no-
tions of control U and state X. Controls are diagnostic and
treatment decisions made and executed in future. Controls
are different diagnostic and treatment activities prescribed by
doctors, including diagnostic tests, medicines, surgical in-
terventions, various procedures, and manipulations. +e
choice of diagnostic and treatment activities is based on the
accumulated medical knowledge and the doctor’s individual
experience. +e scope of potential diagnostic and treatment
activities comprises previously applied measures with proven
efficiency. Controls are essentially precedent dependent.

+e choice of control (Xi, Ui) depends not only on the
current state (Xi) but also on the overall background of the
process as well as controls applied at earlier DTP stages {i, i− 1,
i− 2, . . .}. +is is due to the specific features and nature of the
treatment process. To take the process memory effect into
account, it is proposed to include the integral property of the
relevant control in the extended state of the discrete process.
Each control in the DTP can be associated with some integral
property of such control. For example, such integral properties
include full dose of medicine taken by the patient at this stage
of the DTP or full dose of radiation the patient was exposed to
in the course of radiotherapy. +e frequency (number) of
application of different control elements is also regarded as an
integral property (e.g., the number of assigned ECGs).

DTP modeling based on the Markov process appears
sufficiently substantiated [17, 18, 20], especially in cases
involving DTP description for inpatients with strictly regular
monitoring and medical decision-making.

+us, in the model, the DTP is represented by a sequence
of vectors of equal length and structure V split into two
components—control U and monitored properties X. Con-
trol components have non-negative numerical values. A zero
value of control at this stage of the process means that this
kind of control has never been applied before, starting from
the beginning of the process and up until this step inclusively.
Components of monitored properties are of different nature.
+ey can be dimensional physical values or non-numerical,
for example, assignment of a property’s value to a specific
class. Since it is almost impossible to monitor all the prop-
erties at the same time, certain components of properties may

be unknown to us. When applying different methods to the
model, we may need to digitize non-numerical values of
components and identify missing values of monitored
properties.

2.1. Definition of the Objective. We will review several
methods that can be applied to build a cybernetic taught
system. +e input into the system will be a sequence of
vectors describing a discrete DTP in accordance with the
presented model. +e output will consist of recommenda-
tions proposing diagnostic and treatment options (choice of
controls) for this particular state of the process. A diagram of
the system is presented in Figure 1.

Let us define the objective more accurately and assume
that each DTP model is considered in the context of an
already available predominant diagnosis. For eachmodel, we
have an array of earlier observed DTP implementations.
Such implementations are sources of knowledge about
treatment of a particular nosology, and they are used to teach
a cybernetic recommender system to operate in the given
context. Based on available DTP implementations, we de-
fined a glossary of controls and monitored properties for
each model. Issues related to normalization of primary data,
outlier testing and exclusion, and approaches to data gen-
eralization based on assignment of monitored properties to
generic classes are beyond the scope of this paper [18]. It
might also be necessary to extract data directly from the text
of medical documents. Once this enormous and useful effort
is completed, we will have a bank of clinical data containing
sets of DTPs with homogeneous descriptions for each no-
sology present in the bank. We would like to emphasize that
no primary data reduction is envisaged, such as focusing
solely on properties meaningful in the context of the relevant
nosology. Data are extracted from theMIS “as is”—exactly as
there were entered in the MIS by doctors, assuming such
data will most likely contain significant and meaningful
information for the relevant nosology.

Finally, let us provide examples of typical properties of
nonreduced primary data. We believe that a process ensemble
in a data bankmay reach 10̂ 3–10̂ 6 processes for an individual
nosology. +e dimension of a vector describing one step of
a discrete DTP exceeds 10̂ 3. +e dimension of a control
(output of the cybernetic system) may also exceed 10̂ 3.

+e case-based approach, including its application to
medical decision support, has been described in sufficient
detail in multiple sources [6, 14, 19]. +e main idea of the
case-based approach is quite simple—find a clinical case in
the DB similar to the one in focus and use it for medical
decision support purposes. Additionally, clinical cases used
as precedents during the search can be filtered taking into
account such factors as reputation of medical organizations
that such cases originate from, reputation of doctors who
created such cases, or relevance of the cases in view of
contemporary medical technologies. To ensure successful
application of the case-based approach, it is necessary to
have representative DBs of clinical cases.

Malykh et al. [14] present assessment results with respect
to the accuracy of diagnostic and treatment activities
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recommended using case-based reasoning. �e structure of
the cybernetic system chosen for the approach in focus is
presented in Figure 2.

We have a network and each node in it is presented by
a single DTP state. Each individual DTP represents a speci�c
route within the network (routes are marked in Figure 2 by
orange arrows). In the model, each state is represented by
vector V. A metric or distance d(X, Y) is de�ned for each
state. Based on the de�ned metric or distance, a small-world
graph is plotted [21]. For each node in the small-world
graph, n (graph parameter) closest neighbors are identi�ed.
In Figure 2, closest neighbors are marked with pointing blue
arrows; four closest neighbors are speci�ed for node t—N1,
N2, N3, and Ni2.

Here is how the recommender system operates. �e
input into the system is a current state of the DTP: �e
situation when the input contains the entire implemented
sequence of process states is beyond the scope of this paper.
Several nodes are randomly selected on the small-world

graph (R1 in the example presented in Figure 2). From
original nodes towards their closest neighbors, we go down
to the graph node minimizing locally the distance between
the node (R1→Ni1→Ni2→ t in Figure 2) and the input
state. �e best of all the identi�ed local minimums is se-
lected. It will be regarded as the closest neighbor of input
state In. At this point, the recommended control can be
calculated as the di�erence between integral properties of
control components of two vectors. In Figure 2, these are
state vectors (t+ 1) and (t). �e recommended control is
U�U(t+ 1)−U(t).

It is easy to assess the scale of the network in focus. In the
example with 1,000 processes for one main nosology with
the average duration of the process equal to ten days, we will
need 10,000 network nodes. Each node will store a vector
with the dimension 1,000 or higher. Computational ex-
periments show that 0.5–1% of the total number of nodes is
su�cient as random initial network nodes. In case with
10,000 nodes, the number of initial nodes will be 50–100.�e

X1
X2
.
.
.

Xn

U1
U2

.

.

.
Um

1 2 … t

X1
X2
.
.
.

Xn

U1
U2

.

.

.
Um

X1
X2
.
.
.

Xn

U1
U2

.

.

.
Um

Taught
recommender

system

.

.

.

.

.

.
Z1
Z2
.
.
.

Zm

Output (recommendations)

Discrete process steps

Discrete diagnostic and treatment process

Figure 1: Recommender system.

tN1

N2 t + 1

N3

Ni2

Ni1

In

Input state
Input vector

Output controls

Out

R1 Random state

t – 2

t – 1

t Transition between two states in a single process

N1 t Small-world graphs, d (X,Y) — graph metrics

t – 2

Figure 2: Structure of a case-based system.

4 Journal of Healthcare Engineering



descent along the small-world graph was quick, and the
routes did not exceed 10 steps on average. �e number of
edges originating from each node in the small-world graph
was equal to 8. �e top-down assessment of the number of
metric calculations in this case equals to 100∗10∗8. It is
possible to accelerate the calculations by splitting the small-
world graph into layers corresponding to speci�c DTP
lengths and searching for closest neighbors within the layer
corresponding to the input state. In the above example, we
would have layers consisting of 1,000 states, and we would
search for closest neighbors starting from 5 to 10 randomly
selected nodes. �is is fully acceptable in view of the
computational requirements: computational experiments
show that, in this case, computations can be performed
almost real-time.

Let us review the network teaching process. Teaching
means adding new DTP implementations to the network.
�e number of metric calculations d when adding k states of
a new process to the network containing m states equals to
k∗m. �is is absolutely acceptable in view of the compu-
tational requirements As a result, new knowledge will be
added to the network, and it will be extended by k new nodes
and (k− 1 + k∗n) edges. It is essential to emphasize the
network’s sensitivity to new knowledge. Apparently, any
newly added DTP implementation may have a signi�cant
impact on the decision recommended by the system if the
closest neighbor is selected from the added implementation.
It may be asserted that the network digests new knowledge
and starts applying it immediately. We will not see this in
approaches described below.

As an alternative approach, let us consider a basic neural
network with a single layer. �e structure of the network is
outlined in Figure 3.

Current DTP state is used as input to a basic one-layer
neural network. �e network contains m adders and m
neurons in accordance with the dimension of control com-
ponent U. In the output, each neuron has either one of the
values {0,1}. Output 1 of neuron i means the system recom-
mends control Ui for this state. Output 0 of neuron imeans the
system refuses to recommend control Ui for this state.

Let us refer to the network scale as an example. Let the
dimension of input vector be 1,000 and that of the control
component 500. In such case the teaching process will in-
volve de�nition of 1,000∗500 weights. Let us remark that no
major reduction of the neural network is possible to solve the
above problem. �e reason is that the dimension of the
control component is the number of diagnostic and treat-
ment activities that can be prescribed for this nosology,
including coexisting illnesses. And this number is enormous.
Adding new layers to the neural network will only make
matters worse by increasing the number of taught
parameters.

Let us examine the network teaching process. Initially,
a certain set of DTPs is selected and used for network teaching
purposes, including calculation of weights. New DTP
implementations emerge. How should we use this new
knowledge? If a su�ciently large volume of DTP imple-
mentations was used to teach the network (1,000 to 10,000)
and new implementations constitute an insigni�cant share of
the teaching sample (e.g., 100 new implementations versus
10,000 is merely 1%), it can be asserted that network re-
teaching will not result in any noticeable changes in teaching
parameters, and consequently, any major variations in the
network’s output. �is kind of network is rough and con-
servative; it can “digest” new knowledge only when the
volume of such is su�cient. In this respect, neural networks
are not as good as networks applying the case-based approach.

As another alternative approach, let us consider
a probabilistic neural network. �e structure of the network
is outlined in Figure 4. For each state (state vector V), there is
one kernel function f(V) common for all the states. In our
case, we used a multivariate Gaussian distribution function
with a diagonal covariance matrix. �e kernel function
includes parameter σ a�ecting the function’s width. Each
state is classi�ed into 2m classes, wherem is the dimension of
the control component. If a doctor applies control L to state
t, then t belongs to class KL1; otherwise, it belongs to class
KL0.

Figure 5 shows the impact of control parameter σ on the
type of distribution.
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Now, a probability density function can be “restored” for
each class. For input vector In, we apply Bayes’ formula to
calculate the posterior probability of belonging to each class

and generate recommendations regarding the choice of
diagnostic and treatment activities for this state.

Let us refer to the network scale as an example. Let the
dimension of the input vector be 1,000, the dimension of the
control component be 500, and the teaching sample contain
1,000 processes with 10 states in each. We will need to
calculate 10,000 kernel functions and then calculate 1,000
posterior probabilities of the input vector belonging to each
class for various distributions of kernel function supports for
500∗2 di�erent classes.

Let us examine the network teaching process. �e
teaching process is focused on adding new DTP imple-
mentations to the network, including assignment of states to
di�erent classes. If the number of new implementations is
a small share of the teaching sample used earlier, it can be
asserted that adding new implementations will have no
major impact on the network’s output. �e probabilistic
neural network proves to be rough and conservative; it can
“digest” new knowledge only when the volume of such is
su�cient. In this respect, probabilistic neural networks are
not as good as networks applying the case-based approach.

3. Results

We performed computational experiments for a network
built using the case-based approach in 2015-2016.�e results
were published in Malykh et al. [14]. To compare di�erent
approaches to the problem, we will present the results of
paper [14] in a slightly modi�ed format.

Table 1 shows that the number of correct recommen-
dations (TP True Positive) varies from 58.7 to 94.9%
depending on the type of nosology. �e majority of rec-
ommendations match the doctor’s actions.

In the matter of neural networks, computational ex-
periments for all nosologies listed in Table 1 required quite
a lot of time and computing power. �e practical value of
such full-scale experiments was unclear. �erefore, it was
decided to limit computational experiments to estimations
for nosology J13. Table 2 contains general information about
the experiment with a single-layer neural network.
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Let us emphasize that the volume of statistics on this
illness stored in the DB has increased compared to an earlier
experiment involving the same nosology—from 166 to 266
completed clinical processes. Controls included all types of
drug prescriptions (222 different pharmaceutical products in
our case). Data normalization involved adjustment of pre-
scribed dosages of pharmaceutical products to unified dose
units. +e only monitored variable was “inpatient days.”
Inputs also included bias. 49,728 weights had to be de-
termined. +e optimized target function was a quadratic
residual between neural network output and control com-
ponents monitored in control samples, adjusted to (0, 1). We
used a nonstandard neurons activation bell curve (Gaussian
function). +is choice of activation function was based on
the fact that integral values of many controls had apparent
limits stipulated by Russian federal healthcare standards

(standards of the Russian Ministry of Health). Different
insurance programs also limit integral values of controls.
Healthcare providers will not exceed these limits unless they
find it necessary. Formally, with respect to the model, it
means that once an integral property of a control reaches
a certain limit, it stops growing further or such growth is
highly unlikely. +e gradient of the target function with
respect to weights was calculated explicitly, and the steepest
descent method was applied. Teaching included 1,006 de-
scent steps. Criteria reflecting the accuracy of the neural
network are presented in Table 3.

+e relevant receiver operating characteristic (ROC)
error curve is shown in Figure 6.

Results of the experiment based on a probabilistic neural
network are presented in Table 4. +e state vector dimension
was equal to 639. +e control component included 125

Table 1: Accuracy assessment of recommended diagnostic and treatment activities for seven nosologies using the case-based approach.

MKB-10 code/nosology

Total number of
clinical

precedents/number
of control
precedents

Number of correct
recommendations
among control
precedents

Number of recommendations
with a different control level
among control precedents

Number of diagnostic and
treatment activities the

decision support system was
unable to provide

recommendations for among
control precedents

Number of
states/number of
controlled variables

Absolute value/share
in the total number
of diagnostic and
treatment activities

Absolute value/share in the
total number of diagnostic
and treatment activities

Absolute value/share in the
total number of diagnostic
and treatment activities

J13/pneumonia due to
Streptococcus pneumoniae

166/11 6788/81.6% 3923/47.2% 1530/18.4%2938/118
K80.1/calculus of gallbladder
with other cholecystitis

1018/128 34468/76.7% 18390/40.9% 10490/23.3%12853/931
H25.1/age-related nuclear
cataract

1205/121 3522/94.9% 539/14.5% 189/5.1%5509/293%

H26.2/complicated cataract 1255/126 4362/91.4% 1617/33.9% 408/8.6%5778/249%
I67.4/hypertensive
encephalopathy

1336/134 65678/72.4% 37563/41.4% 25060/27.6%23165/1431
I67.9/cerebrovascular disease,
unspecified

1403/141 58649/75.4% 32447/41.7% 19117/24.6%24875/1518

N20.1/calculus of ureter 1632/164 17489/58.7% 9948/58.7% 12291/41.3%15922/205

Table 2: Accuracy assessment of recommended diagnostic and treatment activities for nosology J13 based on a single-layer neural network.

MKB-10 code/nosology

Total number of clinical
precedents/number of
control precedents

Number of correct
positive

recommendations
among

control precedents

Number of
incorrect
positive

recommendations
among

control precedents

Total number of negative
recommendations/total

number
of positive recommendations
Share of correct negative
recommendations/share of

correct positive
recommendations

Number of neural network
inputs/number of neural

network outputs (number of
controlled variables)

Absolute
value/share in

the total number
of positive

recommendations

Absolute
value/share in

the total number of
positive

recommendations

Absolute value/percent

J13/pneumonia due to
Streptococcus pneumoniae

266/11 339/40.31% 502/59.69% 35567/841
224/222 98.55%/40.31%
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diagnostic tests, 200 laboratory tests (di�erent kinds), 222
di�erent pharmaceuticals, 87 medical treatments, and 4
controls classi�ed as “others.” �e only monitored property
was “inpatient days.” �e number of kernels (states) in the
teaching sample of 266 processes was 4,361.�e dimension of
the state vector in the probabilistic neural network was almost
three times the dimension of the state vector in the single-
layer neural network (639 versus 223). To make the results of
both networks comparable, the output of the probabilistic
neural network was considered to be the same as for the �rst
neural network. �e output was a vector with a dimension of
222, related to prescription of di�erent pharmaceuticals. Both
neural networks generated 36,408 positive and negative
recommendations for the control sample. �e experiment
involved one control parameter σ, a multiplier for a diagonal
covariance matrix used in the kernel function (multivariate
Gaussian distribution of independent random variables). A
value grid was predetermined for the parameter σ, and the
best value of the parameter was chosen based on experimental
calculation results [22]. Calculations were performed for the
following values of σ: (0.1, 0.5, 1, and 2.5). �e best results
were obtained for σ � 2.5.�ey are presented in Table 4. Let us
emphasize that standard deviation values of the state vector
components calculated for the teaching sample were signif-
icant and often exceeded average values. �e multiplier equal
to 2.5 yields “wide” kernel functions (see the rightmost dis-
tribution in Figure 5).With “sharp” kernel functions (σ � 0.1),
the results were obviously worse.

4. Summary

�e focus of this paper was how to build a medical decision
support system based on big clinical data.�e authors review
general approaches to the problem that do not involve in-
dividual models for speci�c nosologies and neither do they
require engagement of experts in the relevant subject area to

such modeling or knowledge extraction from data. Data are
extracted from the MIS without reduction, “as is.” It is
assumed that the data contain signi�cant information
re±ecting medical knowledge and contemporary medical
treatment technologies. �ree di�erent approaches to big
clinical data processing were examined: (1) case-based
reasoning for decision-making; (2) decision-making based
on a single-layer neural network; and (3) decision-making
based on a probabilistic neural network. Experimental
calculations were performed to assess the accuracy of rec-
ommendations generated using di�erent approaches.

Drawbacks of the above neural networks with respect to
the given problem were identi�ed. �e overall accuracy of
provided recommendations was rather high. Moreover, the
accuracy of negative recommendations that the neural
networks learned to provide was very high (98–99%).
However, the accuracy of positive recommendations pro-
vided by the neural networks was not so high (40–55%,
which is obviously insu�cient for successful practical ap-
plication). Another disadvantage of neural networks is their
rough and conservative nature, particularly when digesting
isolated portions of new data with the volume insigni�cant
compared to previously available data.

�e case-based approach to decision-making yielded
more accurate recommendations (59–95%), which is su�-
cient for its successful practical application. Another ad-
vantage of the case-based approach is its sensitivity to new
data. With respect to calculations, the case-based approach is
also more e�cient compared to other options under con-
sideration as it ensures a high operating speed of the decision
support system, thus making it acceptable for practical ap-
plication. �ese are the key �ndings of the study conducted.

�is o�ers encouraging prospects for designing and
developing decision support systems for physicians based on
empirical components of medical knowledge. �is approach
also corresponds to existing case-based character of man-
agement and decision-making inmedical practice. So far, the
results indicate that precedent-based approach has a high
e�ectiveness and could naturally enhance other approaches
to supporting physicians’ decision-making, particularly
knowledge-based ones. �e obvious practical value of this
approach lies in the fact that it can be complementary to
other knowledge-based approaches (clinical pathways,
Evidence-Based Clinical Decision Support, expert systems,
Watson, etc.). �e doctor will be able to make decisions
based on the best examples of medical practice, �nding
precedents of clinical cases close to the given case.

�e constraints of precedent-based approach include the
need for a representative database of veri�ed precedents

Table 3: Accuracy of recommended diagnostic and treatment
activities for nosology J13 based on a single-layer neural network
with an activation threshold equal to 0.1.

Absolute values (neuron activation threshold equal to 0.1)
TP 339 502 FP
TN 35,052 515 FN

Percent (neuron activation threshold equal to 0.1)
TP 40.31% 59.69% FP
TN 98.55% 1.45% FN
TP, true positive; FP, false positive; TN, true negative; FN, false negative.
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Figure 6: ROC error curve.

Table 4: Accuracy of recommended diagnostic and treatment
activities for nosology J13 based on a probabilistic neural network
with σ � 2.5.

Absolute values (σ � 2.5)
TP 233 191 FP
TN 35,376 608 FN

Percent (σ � 2.5)
TP 55.0% 45.0 FP
TN 98.31% 1.69% FN
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excluding medical errors. From another perspective, pre-
cedents with corrected errors are of particular interest to
physicians training and further prevention of such errors.
+e information about the results of these errors and pos-
sible ways of correcting them is also valuable. +us,
precedent-based approach could be widely spread as an
educational tool. On the other hand, the precedent-based
approach does not imply formalization of medical knowl-
edge, which entails poor cognitive justification of generated
recommendations. Consequently, justifications only de-
scribe how other patients were treated in similar clinical
cases.+ere are also problems with optimization of provided
metrics, compression of state descriptions, and construction
of training procedures. +ese problems are connected with
high dimensionality of the space of state characteristics and
samples of clinical precedents. However, discussion of these
issues and possible ways of addressing them has been left
outside of this research [14].

In further studies, we are going to focus on detailed
application of the case-based approach, analyze metrics, and
distances not only for pairs of vectors but also for pairs of
vector sequences, and examine issues concerned with in-
telligent normalization of primary data and data extraction
from plain texts of medical documents.
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